miércoles, 7 de agosto de 2013

PROBLEMA DE ASIGNACIÓN



El problema de asignación es encontrar un emparejamiento de peso máximo en un grafo bipartido ponderado. Es uno de los problemas fundamentales de optimización combinatoria de la rama de optimización o investigación operativa en matemática.
Una descripción apropiada de lo que trata de lograr el modelo de asignación es:
“La mejor persona para el trabajo”
El problema de asignación tiene que ver con la designación de tareas a empleados, de territorios a vendedores, de contratos a postores o de trabajos a plantas, etc. En otras palabras, a la disposición de algunos recursos(máquinas o personas) para la realización de ciertos productos a 'costo mínimo.
Una definición más formal pudiera ser:
Problema de Asignación: Caso particular del problema de Transporte donde los asignados son recursos destinados a la realización de tareas, los asignados pueden ser personas, máquinas, vehículos, plantas o períodos de tiempo. En estos problemas la oferta en cada origen es de valor 1 y la demanda en cada destino es también de valor 1.
El problema de asignación tuvo su origen en la revolución industrial, ya que el surgimiento de las máquinas hizo que fuera necesario asignar una tarea a un trabajador.
Thomas Jefferson en 1792 lo sugirió para asignar un representante a cada estado, pero formalmente aparece este problema en 1941, cuando F.L. Hitchcook publica una solución analítica del problema, pero no es hasta 1955 cuando Harold W. Kuhn plantea el Método húngaro, que fue posteriormente revisado por James Munkres en 1957; dicho método está basado fundamentalmente en los primeros trabajos de otros dos matemáticos húngaros: Dénes Köning y Jenö Egervary.

Hoy en día en pleno apogeo de la globalización este problema surge cada vez con mayor frecuencia el uso de este problema de la rama de la investigación de operaciones, podemos decir que es la aplicación del método científico para asignar los recursos o actividades de forma eficaz, en la gestión y organización de sistemas complejos, su objetivo es ayudar a la toma de decisiones.

EL algoritmo Húngaro es un algoritmo de optimización el cual resuelve problemas de asignación en tiempo  O(n^3\,). La primera versión conocida del método Húngaro, fue inventado y publicado por Harold W. Kuhn en 1955. Este fue revisado por James Munkres en 1957, y ha sido conocido desde entonces como el algoritmo Húngaro, el algoritmo de la asignación de Munkres, o el algoritmo de Kuhn-Munkres.

El algoritmo desarrollado por Kuhn está basado fundamentalmente en los primeros trabajos de otros dos matemáticos Húngaros: Dénes König y Jenő Egerváry. La gran ventaja del método de Kuhn es que es fuertemente polinómico.

El algoritmo húngaro construye una solución del problema primal partiendo de una solución no admisible (que corresponde a una solución admisible del dual) haciéndola poco a poco más admisible.

El algoritmo modela un problema de asignación como una matriz de costes n×m, donde cada elemento representa el coste de asignar el enésimo trabajador al emésimo trabajo. Por defecto, el algoritmo realiza la minimización de los elementos de la matriz; de ahí que en caso de ser un problema de minimización de costes, es suficiente con comenzar la eliminación de Gauss-Jordan para hacer ceros (al menos un cero por línea y por columna). Sin embargo, en caso de un problema de maximización del beneficio, el coste de la matriz necesita ser modificado para que la minimización de sus elementos lleve a una maximización de los valores de coste originales. En un problema de costes infinito, el coste inicial de la matriz puede ser remodelado restando a cada elemento de cada línea el valor máximo del elemento de esa línea (o análogamente columna ). En un problema de coste infinito, todos los elementos son restados por el valor máximo de la matriz entera. En la matriz se tiene que realizar un conjunto de operaciones que nos permitirán conocer con mejor eficacia el resultado final de la problemática planteada.

BIBLIOGRAFIA

"Problema De La Asignacià ³ n." - Wikipedia, La Enciclopedia Libre . Np, nd Web. 25 de agosto 2013.
http://es.wikipedia.org/wiki/Problema_de_la_asignaci%C3%B3n


No hay comentarios:

Publicar un comentario